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Evasive levels in qnantisation through wavepacket coupling: 
a semi-classical investigation 

P Amiott and B Giraud 
CEN-Saclay, 91191 Gif-sur-Yvette Cedex, France 
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Abstract. A new method is presented to introduceAclassical mechanics elements into the 
problem of obtaining the spectrum of an operator H(j? ,d) .  A finite-rank functional space 
is created by centring complex wavepackets on a discrete number of points on an equi- 
energy of the classical H ( p ,  q )  and by placing real wavepackets in the classically forbidden 
region. The latter span the active subspace, 9, and the former the inactive subspace, 9, 
for an application of the method of Bloch-Horowitz. Depending on the rank retained for 
9, some levels can be calculated with an extreme accuracy in a simple model while others 
remain evasive. A semi-classical study of the Green function in the inactive subspace 9, 
classically allowed, gives a clear explanation of this phenomenon and sheds new light on 
the significance of this semi-classical approximation for the propagator. An extension to 
the problem of barrier penetration is proposed. 

1. Introduction 

There have been a few attempts (Voros 1977, Knoll and Schaeffer 1976, Schaeffer 
1978, Balian and Bloch 1974, Kleinert and Reinhardt 1979) to incorporate information 
from classical mechanics into the quantum mechanical problem which investigates the 
possibility that an energy E corresponds to an eigenvalue of an operator H. Both the 
real case (quantisation) and the complex case (barrier penetration and scattering) have 
been investigated. So far two lines of thought have retained most of the attention. 
The first originates from WKB with an essentially classical starting point with quantum 
corrections eventually added through matching conditions between classically allowed 
and forbidden regions. The second originates from the classical limit of the functional 
integral representation for the Green function G(E)-inverse of H. When this integral 
is limited or can be reduced to a sum of trajectories in the space of spatial coordinates 
(Feynman’s integral), a link with WKB can be established (Orland 1980, Zinn-Justin 
1983). 

We submit that there is another approach which is yet capable of introducing 
classical mechanics elements into the solution of the quantum problem. 

The simplification it brings comes from the use of the Bloch-Horowitz Hamiltonian, 
H’, which reduces the problem to one of diagonalisation of a finite-rank Hamiltonian 
(Bloch and Horowitz 1958). The novelty comes from our using it backward and from 
defining the active/passive subspaces by using discrete phase-space wavepackets as 
state vectors (Giraud et a1 1976). Backward means that the classically allowed region 
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will constitute the passive or 2-subspace. The active or 9-subspace where diagonalisa- 
tion of H’ is carried out is the classically forbidden region. It follows that the asymptotic 
region is taken ‘exactly’ into account whereas the propagator which enters H’ can be 
treated in the classical limit of a functional integral representation because it is defined 
in the 2-subspace which is here classically allowed. Furthermore, we are not beset 
with problems of matching wavefunctions at the boundary between classically allowed 
and forbidden regions. 

2. Theory 

First we must recall that the Bloch-Horowitz method of diagonalising an auxiliary 
Hamiltonian H‘ in an active or 9-subspace, instead of diagonalising the exact Hamil- 
tonian H in the full space, is exact in the sense that it is not in itself an approximation. 
With P and Q the projectors on 9 and 2 respectively, H’ is 

H’ = PHP + PHQ( E - QHQ)- QHP = H’( E ) ,  (1) 

where the idempotent operators P and Q must satisfy 

PQ=QP=O,  

P+Q=U. 

The diagonalisation of H ’ ( E )  is subject to a self-consistent condition 

E =eigenvalue ( H ‘ ( E ) ) .  (4) 

For the sake of illustration let us consider the problem of quantisation in the well 
of figure l ( a ) .  For a trial energy E, the classical motion is limited to the ‘inside region’ 
between q- and q+. Figure l i b )  shows the phase-space trajectory for 

H = T ( p )  + V ( q )  
corresponding to that energy. We select the inside or classically allowed region as the 
passive or inactive subspace for the Bloch-Horowitz treatment. Consequently the 
projector Q will be built from wavepackets l z l )  = lqi, p i ) ,  

where the wavepacket 1.q) can be chosen most conveniently as a boosted Gaussian, 
see equation (23). The sum over i and j covers the dots (0) of figure 1( b)  which must 
be chosen so as to constitute a sufficiently complete subset of states. This point will 
be made clearer in § 5 of this paper where the signature of insufficient completeness 
is found as the lack of connectedness of classical trajectories. The matrix W is simply 
the inverse of the overlap matrix N 

NI, = (Z,IZ/). ( 6 )  
We define the P-subspace as the classically forbidden region of phase-space and 
consequently the projector P is defined from the complex wavepackets Iyn) = /qnr pn),  

where the sum is over the crosses ( X )  of figure 1( b) .  In practice it is sufficient to limit 



A semi-classical propagator 

I 

i p  

-. .. . \ 
2179 

V i q )  (a ) 

B 
16) 

~ IP 
I 

Figure 1. Schematic illustration of (a )  a potential 
V ( q )  and ( b )  the classical phase-space trajectory at 
an energy E. 

Figure 2. As figure 1 but for a one-dimensional har- 
monic oscillator specifying the P and Q subspaces. 
The dots (0) indicate the centres of the phase-space 
packets used to span 0. The crosses ( X )  play the same 
role for P. 

oneself to real wavepackets i.e. centred on the q-axis with pn = O .  Furthermore the 
finite range of H provides a way to limit the number of packets required to 5dequately 
generate P, as the correction term in H’ ,  equation (l),  is proportional to lPHQ12. This 
is a practical means of satisfying approximately condition (3).  Condition (2) is easily 
satisfied by replacing the Iy,) which span 9 by the 17,): 

Jm)=~,( l -Q) lm>,  (8) 
with N,  a suitable normalisation factor. Hence (2) is exactly and easily satisfied. 

gator 
It follows that both QHQ and H’ become finite-rank operators. Thus the propa- 

G ( E )  = ( E  - QHQ)-’ (9) 

is trivial to calculate and the diagonalisation of H ’ ( E )  is easily carried out under the 
constraint (4). This diagonalisation of H ’ ( E )  is carried out in the 9-subspace which 
corresponds to the classically forbidden region, which is thus automatically taken into 
account. This is in opposition to wKB-based methods where the role of the classically 
forbidden region must be brought in through boundary matching corrections (Froman 
and Froman 1965). The rescattering term of H’ which plays a major role is weighted 
by the propagator of QHQ which is responsible for the dynamics in the classically 
allowed region. Thus a semi-classical estimate of this propagator is possible whereas 
it would have been impossible had we reversed the roles of 9 and 2. 

The self-consistent condition (4) may lead to a graphic search for the eigenvalue 
as can be seen in figure 3 (which will be discussed later) with the asymptote given by 
QHQ and the correct eigenvalue given by E = E‘ = eigen(H’(E)).  

At this point classical mechanics has been used only to help define P and Q for 
the quantum problem. The link between classical and quantum models can be 
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developed further with the introduction of the phase-space functional integral rep- 
resentation for the propagator G ( E )  of equation (9). As is well known, the stationary 
phase approximation of this integral will take us into a classical approximation for 
G ( E )  = ( E  - QHQ)-’. This propagator involves the ‘Hamiltonian’ QHQ which we 
created to describe the dynamics of the classically allowed region. Thus it is quite 
satisfactory to apply a classical approximation to the Green function of this Hamiltonian. 
Still the classically forbidden region will be taken into account quantum mechanically 
through the self-consistent diagonalisation of H’( E ) .  

We sketch rapidly the stationary phase approximation (well known) for the phase- 
space functional integral representation of the propagator (Orland 1980, Faddeev 
1976, Klauder 1978). First it is well known that the principal part (PP) of the Green 
function, G ( E ) ,  is related to the partial Fourier transform of the time dependent 
propagator 

PP(E - QHQ)- ’ - id (E  - QHQ) = i d t  exp[i(E +iE - QHQ)t]. (10) jom 
We are interested in computing complex wavepacket matrix elements of such a quantity. 
One notes that in the continuous limit of the functional integral, one finds 

where z (  T )  = (4( T ) ,  p (  7)). The quantity H (  z )  is simply 

H ( Z )  = (Z~QHQJZ) (12) 

AS usual in functional integrals, j ~ [ z ( T ) ]  signifies a sum over all trajectories 
and 12) is defined as dlz(T))/dT. 

satisfying the boundary conditions 

(~(0)) = Izj) and (z(t)l =(zil* (13) 
The stationary phase approximation selects among all these trajectories those which 
make the phase of the integrand remain stationary i.e. which obey 

SS = 6 d~[i(zl i ) -H(z)]  = 0. lof 
If the index v counts the trajectories which satisfy (14) and (13), the stationary phase 
(SP) approximation reads 

where 
r r  

Although (14) reminds us of Hamilton’s principle in classical mechanics, the analogy 
is not complete until we impose the stationary phase approximation to the integral in 
(10). Here, in the limit E +O, the stationarity condition reads 

E = -aS,(4,, qi; t ) /a t .  (17) 
With (14) and (17),  S can be fully identified with a classical action. For the problem 
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at hand (17) identifies a set of values for t, the t,,, for which it is satisfied. Hence our 
classical approximation reads (for E # H ( z ) )  

(ziI(E - QHQ)-lIzj),l = Re i 1 d,, exp[i(E +is)t,, + S. , ] ) ,  (18) 

where S,, = S,(qj, q i ;  t , , ) .  The C, and d,, are the Jacobians which take into account 
the quadratic fluctuations of the integrands in (1 1) and (10). Following our choice of 
state vectors, { ( z i ) } ,  to span 9, H ( z )  has a value E + so where so is a zero-point energy. 
Consequently the S-function term of (10) plays no role in practice. 

The analogy with WKB is obvious since the latter rests essentially upon (18), along 
with (14) and (17). At the same time, the difference with the standard use of WKB is 
also obvious since it applies to the full H whereas we apply the semi-classical approxima- 
tion to QHQ which is, by construction, responsible for the dynamics in the classical 
region. This seems more coherent, specially since the classically forbidden region is 
taken into account by the diagonalisation of H'.  Due to the self-consistent condition 
(4) and the fact that the Bloch-Horowitz method is intrinsically exact, the classically 
forbidden region plays a non-perturbative role. Yet its introduction is not overwhelming 
in technical or computational terms since the finite range of H provides a manageable 
tool to reduce the rank of P. 

( n,u 

3. The model 

We present a model calculation to illustrate numerically the properties of the theory. 
It is based on the one-dimensional harmonic oscillator 

w 
H=-(p2+q2).  

2 

Its spectrum is well known 

E,=(n+$)w,  n = 0 , 1 , 2 , .  . . ,  (20) 
and its bound state wavefunctions are also well known with 

Go = T-l /4  e-42/2 

We note that the width is one. 
In figure 2(b) the circle marks the classical equi-energy E in phase space. The 

discrete wavepackets Izi) which span 9 are indicated by 0 and are centred on this 
equi-energy. We use Klauder's method to construct the Izi)  starting from a fiducial 
vector (40) (Klauder 1963, 1978). 

(q140) = T-1/4p-1/2 e-qz/2P' (22) 

(qlzi) = 77-1/4p-1/2 exp[ - (4 - qi12/ 2~ - ipi ( 4  - qi )I. 
This yields 

(23). 

The width, p, will turn out to be a variational parameter although a rather soft one 
in the present case. 

It is straightforward to compute the overlap matrix N of elements 

N,j=(z,lzj)-  (24) 
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The construction of the projector Q requires that we compute W, the inverse of N 

W = N-’, ( 2 5 )  

and the diagonalisation of QHQ is made easier by knowing the matrix X 

X = N-112 (26) 

which allows the construction from the (12,)) of an orthonormal basis {IZ)}. In matrix 
notation 

lZ) = X T / Z ) .  (27) 

We diagonalise (ZilQHQIZ,) to obtain the eigenvalues, &k, and eigenvectors I X k )  of 
QHQ, required to calculate G(E) = ( E  - QHQ)-’ 

To span the 9-subspace, we first construct null momentum wavepackets centred 
on the crosses ( X )  of figure 2 ( b ) .  We elected to place them at 2E, 3 E . .  , and they 
are constructed according to Klauder’s formula, as we did for the lzi). They are labelled 
{Iy,,)}. We do not use these {Iy,)} since we must satisfy PQ=O. They are replaced 

(30) 

by the { I%) }  
I ‘Yn) = Nn ( 1 - Q) I Yn)? 

where N,, is a suitable normalisation factor. One can compute their overlap matrix 

N n m  = ( ’Yn I ’Ym), (31) 

with its inverse of elements W,,, and its square root matrix denoted Y. Then we 
construct an orthonormal set { Ir,)} according to 

Ir)= ~ ~ 1 7 ) .  (32) 
The projector P on 9 is simply 

The computation of the inside-outside coupling terms of H’ ,  the QHP and PHQ, 
is now possible and so is the trivial Born term, PHP. Next we diagonalise H ’ ( E )  in 
the {IF,)} representation for various values of E until the self-consistent condition 

E = eigen(H’(E)) (34) 

is met for one eigenvalue of H’ at a time. 
We repeat the operation for various values of P since, strictly speaking, E = E ( P ) .  

By the Rayleigh-Ritz principle, /3 is a variational parameter and we seek p for which 

a W ) l a P l , -  = 0 ,  (35) 

at which point E ( p )  is identified with an eigenvalue of the original Hamiltonian H. 
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4. Some illustrative numerical results 

We set w = 15 so that the spectrum of H is simply 

Eo=7.5,  E l = 2 2 . 5 . .  . . 
First we make a search for Eo=7 .5  using only four packets to span 9, with their 
centres on the full dots (0) in figure 2(b). Similarly the rank of P is kept at four, 
with the packets centred on the crosses of figure l ( b ) .  We repeat the sequence of 
operations outlined in D 3 for various values of p. The typical result of a sequence is 
shown in figure 3 for p = 1.20 which gives (full lines) the spectrum of H' as a function 
of E. The asymptote is due to the pole of G ( E )  at -7.63. The self-consistent condition, 
E =eigen(H'(E)),  yields E =7.5003, essentially the exact result. The high level of 
precision is illustrated in figure 4 which reproduces a portion of figure 3 at a different 
scale to isolate the lowest level of H ' ( E )  around E = 7.5 for p = 1.20. In terms of 
percentage, the improvement is small between 7.63 and 7.5003. It is more significant 
that the final result be essentially exact. The broken line in figure 3 gives the spectrum 
of PHP which is very little dependent upon E and illustrates clearly the attraction 
toward the correct eigenvalue induced in H' by G ( E )  correctly weighted by PHQ 
and QHP. The result may appear trivial, considering the simplicity of the illustrative 
model. Not quite so, if one consults figure 5 where we plotted the self-consistent value 
of E as a function of the parameter p. Albeit a soft one, p clearly appears as a 
variational parameter. More important is the fact that the stationary point lies at a 
value of p-1.20 different from 1.00 the natural width of &,, the eigenfunctions of 
H. In fact p is here a soft variational parameter and the minimum region extends 
from p - 1.15 to p = 1.3 with E = E '  in that region varying between 7.5007 and 
7.5003, not a significant difference. It is nonetheless clear that p = 1.0 is not on the 
minimum plateau. 

100 
- ..... ... .. . ... . ... ... ... . ..... . - 

w 
0 
a. 

+ 
+ 

E 
a 

-50 
7 0  7 2  7 i  7 6  

E 

85 

80 

E' 

7 5  

7 c  

E 

Figure 3. Spectrum of PHP (broken lines) and of 
H' (full lines) as a function of the trial energy E, 
around E = 7 . 5 ,  with P = l . 2 0  and N,=4. 

Figure 4. Small scale remake of figure 3 around E = 
7.5 to illustrate the self-consistent convergence. 
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Figure 5. Large and small case of the self-consistent 
value of E as a function of /3 for the E = 7.5 level 
to illustrate the variational character of /3. 

Figure 6. Spectrum of PHP (broken line) and of H’ 
(full lines) as a function of the trial energy E, around 
E = 22.5, with = 1.20 and N ,  = 8. 

Next, keeping the rank of P and Q at 4 we seek the next level of H at 22.5. It 
proves simply impossible to achieve. On the other hand, raising the rank of Q to 8 
while retaining that of P at 4 yields, for p = 1.20, the results of figures 6 and 7. Now 
the search proves not only possible but the numerical result obtained under the 
self-consistent condition, E = E’ = 22.5003, is once again very accurate. How this 
comes into being, and the reason for this special role of the rank of Q, while H ’ ( E )  
is diagonalised in P, will become quite clear in § 5. 

5. The classical limit for G(E) and the rank of 3 

In § 2 we rapidly rederived a classical limit for the matrix element ( z , (G(E) l z i )  of the 
time independent propagator G ( E ) .  The final result appears in (18).  The phase of 
each contribution to this matrix element is ( E  +k)t, ,  + S,, where 

S,, = [or”n [i(zli)-H(z)] dt. (36) 

Here t,, is the time required, for the classical system described by the Hamiltonian 

H ( z )  = (ZIQHQlZ) ,  (37) 

with z the continuous label, z = (4, p ) ,  to join the ‘points’ zi and zj Typically 

H ( 2 )  = E  + Eo 

where E~ is a zero-point energy. Although finds its origin in quantum fluctuations 
it appears here, even if we are working in a ‘classical’ approximation since H ( z )  is a 
classical quantity. 
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Figure 7. Small scale remake of figure 6 around E = 
22.5 to illustrate the self-consistent convergence 
(convergence at 22.5003). 

Figure 8. Trajectories, in the first quadrant of phase 
space, of O ( E ) H Q ( E )  for various values of E with 
p = 1.15 and N ,  = 4 .  

For S,, to exist in (36), there must exist at least one simply connected trajectory 
between z,  and z,. In our simple example it would appear that such a trajectory must 
follow the circle in figure 2( b ) .  This is not quite so because this circle is an equi-energy 
(value E )  of H (classical) while we are interested here, in order to be coherent, in a 
trajectory of QHQ at a value E + E,,. Because the projector Q is itself a function of 
E it follows that H ( z )  = ( z I Q ( E ) H Q ( E ) l z )  is itself dependent upon E. First we study 
the trajectories of H ( z )  in z or (4 ,  p )  space for different values of E. Figure 8 shows 
the result of this investigation (limited to the first quadrant as it is symmetrical). 
Clearly for N ,  = 4 there exist no simply connected trajectories between z ,  and z2 for 
E 3  18. Now, because QHQ is of finite rank, it can be quantum mechanically 
diagonalised exactly and the matrix elements of G( E )  also calculated exactly between 
the various z. The same holds true for the time dependent propagator (15). The exact 
and classically approximated phases of this time dependent propagator exp( -iQHQ) r 
between z1 and various z,  are compared in table 1 as a function of E for No = 4. 
With z,  = z ,  and z, = z2,  the difference between these two phases is plotted in figure 
9. Clearly this is an even more stringent test as the agreement starts breaking down 
at E = 12.4. Both tests agree that E = 22.5 is beyond the possibilities of G ( E )  for a 
QHQ constructed from a Q-subspace of rank four. Simply put, the set of four packets 
lz,) to span 9 does not cover sufficiently the region of phase space involved to allow 
a good simply connected trajectory for E 3 12.4 and in fact it does not allow any such 
trajectory for E b 18. 

This problem disappears if we push the rank of 9 to 8 by adding the full circles of 
figure 2 ( b )  as sites to centre the lz,) which span 9. Now the search for the level at 
E = 22.5 becomes successful indeed as already shown in figure 6. This is quite coherent 
with the data collected in figure 10 where we plot the trajectories of H ( z )  for various 
E and is further illustrated in table 2 where the exact and the classical phases of 
exp(-iQHQt) are tabulated for N, = 8 as a function of E. Under both criteria the 
region around E = 22.5 is now clearly available to G ( E ) .  Interestingly, it was not 
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Table 1. Calculated against expected values of arg((zj(e-'QHQ'lz,)) for various values of 
E for P = 1.15 and NQ = 4. The expected value appears in the column labelled 'correct'. 

~~ 

6/1.15 4 

811.15 4 

1011.15 4 

1211.15 4 

141 1.1s 4 

16I1.1.5 4 

17f1.15 

112 0.003 
113 1.002 
114 1.009 

1 /3  0.991 
114 0.995 
112 -0.012 
113 0.978 
114 0.981 
112 -0.026 
113 0.914 
114 1.002 
112 0.960 
113 1.051 
114 2.146 
112 0.989 
113 2.288 
114 2.494 

112 -0.003 

112 -0.904 
113 -2.636 
114 -3.985 

0 
1 .o 
1.0 
0 
1.0 
1 .o 
0 
1 .0 
1 .o 
0 
1 .o 
1 .o 
0 
1 .o 
1 .o 
0 
1 .o 
1 .o 
0 
1.0 
1 .o 

The column (cp,,,,,-cp,,,,,)/ 71 must be compared with the column labelled 'correct' which 
gives the expected value of ( ( P ~ ~ ~ ~ ~ - ( P ~ ~ ~ ~ ~ ) / ~ T  taking into account the correction on (P~~,,~ 

due to the fact that z3 is a classical turning point. 

t 

6 8 10 12 14 16 
E 

Figure 9. Plot of (9class-9quant)/71 with P = 1.15 and 
No = 4 where cp = arg((rzle-'OHQ'/zl)). 

4 

Figure 10. As figure 8 but with NQ = 8. 

necessary to increase the rank of P nor the way to define the packets ( 1 ~ ~ ) )  which 
span it in order to restore order. The whole argument is based on the classical 
approximation to the propagator in the integral representation. This was made possible 
because, by construction, one restricted the role of this propagator to the classically 
allowed region. Nonetheless, there does not seem to be any a priori reason why the 
purely quantum treatment of the level at E = 22.5 should fail where it works so well 
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Table 2. Calculated against expected values of arg((z,le-'QHQ'~z,)) for various values of 
E for p = 1.15 or 1.20 and NQ=8. The expected value appears in the column labelled 
'correct'. 

EIP NQ i / i  ((Pclarr-(Pquant)l 77 Correct 

1011.15 8 1/2 0.004 0 

12/ 1.15 8 1/2 0.003 0 

141 1.15 8 1/2 0.002 0 

161 1.15 8 1/2 0.001 0 

17/1.15 8 1/2 0 0 

18/ 1.20 8 112 0.007 0 

20/1.20 8 112 0.005 0 

113 1.008 1.0 
1/4 1.013 1.0 

113 1.006 1 .o 
114 1.010 1 .o 

113 1.003 1.0 
114 1.006 1 .o 

1/3  1.000 1.0 
1/4 1.003 1.0 

113 0.999 1 .o 
114 1.001 1.0 

113 1.009 1 .o 
114 1.019 

1/3 1.005 1.0 
114 1.015 1.0 

113 1.001 1.0 
1/4 1.010 1.0 

113 0.997 1 .o 
114 1.004 1.0 

1/3 0.977 1.0 
114 0.980 1 .o 

2211.20 8 1/2 0.003 0 

2411.20 8 1/2 0.001 0 

301 1.20 8 112 -0.008 0 

As for table 1, (9c,ass-9quanJ/~ must be compared with 'correct'. 

at E = 7 . 5  for N ,  = 4. Since the evaluation of the propagator rests heavily on the 
spectrum of QHQ, equation (28),  we study this spectrum in figure 11. The behaviour 
of the levels is smooth and continuous. Setting aside the case of the level at 7.5, the 
level which starts at 22.5 rises very smoothly. The straight line corresponds to 
E = eigen( Q ( E ) H Q ( E ) ) .  Of course the second level of QHQ never gets close enough 
to this line for the Bloch-Horowitz diagonalisation to work. One must pursue the 
search to  relatively high values of E for this test to work. The classical test told us 
in advance that the search for the 22.5 level for N ,  = 4 was doomed to fail. 

Curiously enough it is the classical limit for G ( E )  which succeeds in shedding some 
light on the situation. Clearly this is no accident and it points to the great significance 
of this classical approximation. At the same time it circumscribes its application which 
is made possible here only because we constructed the propagator of QHQ to cover 
the classically allowed region where a classical approximation makes sense. This raises 
new questions on the use of such an approximation for the propagator of a full 
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Hamiltonian H which, quantum mechanically, covers both classically allowed and 
forbidden regions. Here we kept the classically forbidden region under a purely 
quantum mechanical treatment, the self-consistent diagonalisation of H’( E )  in the 
%subspace. It is remarkable that the rank of P could be kept at a minimum. 

‘ VI91 i 

l+5 t 
I I 

i 1 
3 5 t  

I 25 1 

15 1 / /  - 

5 10 15 20 25 
E 

Figure 11. Spectrum of Q ( E ) H Q ( E )  as a function 
of E with p = 1.15 and No =4. The straight line 
indicates simply where E = eigen( Q ( E ) H Q ( E ) ) .  

Figure 12. Schematic illustration of (a) a potential, 
V ( q )  and ( b )  the phase space involved in the 
extension of the method to the problem of a barrier 
penetration. 

6. Barrier penetration 

This section is purely formal as calculations will be reported later. Schematically the 
problem is shown in figures 12( a )  and (b). The 9-subspace is now made up of 2,O Lj12 
with Q =  Q1+Q2. If we are interested in the decay of a quasi-bound state through 
penetration of the barrier then QZ will be built from wavepackets centred on the full 
dots (0) for p >  0. This way we restrict ourselves to purely outgoing wavepackets in 
the free region, beyond qt. This is appropriate to describe disintegration. This 
restriction to purely outgoing Gamov-like packets and the appropriate definition of 
the matrix elements which involve them (Giraud et a1 1982, Romo 1968) will generate 
a symmetric but non-Hermitian matrix. Hence the eigenvalues of H ’ ( E )  will become 
complex. The imaginary part of E is readily turned into the half-life of the quasi-bound 
level. 

Because of the high accuracy in the calculations, as suggested by our simple model 
calculation and because we have no problem of matching wavefunctions at q-,  q+ and 
qf, it is hoped that the present method can prove a useful tool to study barrier 
penetration. We also stress that the multidimensional generalisation is fairly straight- 
forward. 
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7. Conclusion 

We have proposed a new method which introduces simple classical mechanics elements 
in order to simplify the search for the spectrum of an operator H. Classically allowed 
and forbidden regions are effectively separated. Yet we avoid the problem of matching 
wavefunctions at the boundary, a problem which besets WKB, specially when trying to 
generalise to systems of more than one dimension. Here this generalisation is fairly 
straightforward, the price to be paid being purely technical. We single out the propa- 
gator of QHQ in the classically allowed region and successfully apply criteria based 
on the semi-classical approximation to this propagator in order to explain the break- 
down of the purely quantum scheme in the search for the E = 22.5 level. Because 
QHQ is limited to the classically allowed region (up to the spread of the packets 
responsible for the zero-point energy of H ( z ) ) ,  it is coherent to apply semi-classical 
approximations to its propagator. We feel this is a significant improvement in the 
study of the meaning of this semi-classical approximation. 

Evidently the example given is trivial but the results are not trivial, specially figures 
5 , 8  and 9. The latter shows a sharp breakdown between the classical and the quantum 
estimates of the phase of the time dependent propagator for QHQ with N, = 4. Indeed 
for E b 18, the former does not even exist whereas the latter can still be calculated 
but to no avail since we remain incapable of reaching the E = E ’ = 2 2 . 5  level even 
through a purely quantum mechanical procedure. Since the spectrum of QHQ plays 
a major role in G ( E )  it is significant that this spectrum, see figure 11, shows no 
dramatic change around E = 12.4 where the discontinuity appears in figure 9, nor 
around E = 18, where the simply connected classical trajectory disappears (No  = 4). 
It is the semi-classical estimate of the propagator of QHQ, not H, which tells us why 
there is a breakdown. 

Contrary to WKB this method is easily generalised to multidimensional systems, 
essentially because it is not beset by wavefunction matching. Consequently we feel 
that it can develop into a useful tool to study barrier penetration. 
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